42 research outputs found

    Network Representation of Multi-Cell Accelerating Structures

    Get PDF
    The analysis of the electrodynamic properties of a complete multi-cell accelerating structure using electromagnetic numerical simulation codes is presently at the edge of existing computer capabilities. To overcome this limitation, a network representation is proposed which derives the overall scattering transfer matrix of such multi-cell structures from single-cell data calculated using the commercial finite-element code HFSS. For a constant-impedance structure, computation of the eigenvalues of this matrix allows dispersion diagrams to be obtained. In the more general case, this formalism leads to a representation of the coupled-chain of cavities as a set of cascaded non identical multipoles

    A New Technique to Compute Long-Range Wakefields in Accelerating Structures

    Get PDF
    A new technique is proposed to compute the coupling impedances and the long-range wakefields based on a scattering-matrix formalism which relies heavily upon post-processed data from the commercial finite-element code HFSS. To illustrate the speed of this technique, the procedures to compute the long-range wakefields of conventional constant-impedance structures and of structures damped with waveguides are presented. The efficiency and accuracy of the technique is achieved because the characteristics of periodic structures can be computed using single-cell data. Damping and synchronism effects are determined from such a computation

    Coupler Studies for CLIC Accelerating Structures

    Get PDF
    Due to high input power required to feed the accelerating structures of the Compact Linear Collider, the RF input and output couplers are critical components. Four different types of double-feed cavity-based couplers as well as a mode launcher have been investigated. Three of them are based on magnetic coupling between the input waveguides and the cavity while the fourth is based on electric coupling. The different designs have been optimized to minimize surface electric field as well as field asymmetry and to reduce the pulse surface heating and the sensitivity to mechanical errors

    A New Damped and Tapered Accelerating Structure for CLIC

    Get PDF
    The main performance limits when designing accelerating structures for the Compact Linear Collider (CLIC) for an average accelerating gradient above 100 MV/m are electrical breakdown and material fatigue caused by pulsed surface heating. In addition, for stable beam operation, the structures should have low short-range transverse wakefields and much-reduced transverse and longitudinal long-range wakefields. Two damped and tapered accelerating structures have been designed. The first has an accelerating gradient of 112 MV/m with the surface electrical field limited to 300 MV/m and the maximum temperature increase limited to 100°C. The second, with an accelerating gradient of 150 MV/m, has a peak surface electrical field of 392 MV/m and a maximum temperature increase of 167°C. Innovations to the cell and damping waveguide geometry and to the tapering of the structures are presented, and possible further improvements are proposed

    Antireflection silicon structures with hydrophobic property fabricated by three-beam laser interference

    Get PDF
    This paper demonstrates antireflective structures on silicon wafer surfaces with hydrophobic property fabricated by three-beam laser interference. In this work, a three-beam laser interference system was set up to generate periodic micro-nano hole structures with hexagonal distributions. Compared with the existing technologies, the array of hexagonally-distributed hole structures fabricated by three-beam laser interference reveals a design guideline to achieve considerably low solar-weighted reflectance (SWR) in the wavelength range of 300-780 nm. The resulting periodic hexagonally-distributed hole structures have shown extremely low SWR (1.86%) and relatively large contact angle (140°) providing with a self-cleaning capability on the solar cell surface

    A compact and cost-effective hard X-ray free-electron laser driven by a high-brightness and low-energy electron beam

    Get PDF
    We present the first lasing results of SwissFEL, a hard X-ray free-electron laser (FEL) that recently came into operation at the Paul Scherrer Institute in Switzerland. SwissFEL is a very stable, compact and cost-effective X-ray FEL facility driven by a low-energy and ultra-low-emittance electron beam travelling through short-period undulators. It delivers stable hard X-ray FEL radiation at 1-Å wavelength with pulse energies of more than 500 μJ, pulse durations of ~30 fs (root mean square) and spectral bandwidth below the per-mil level. Using special configurations, we have produced pulses shorter than 1 fs and, in a different set-up, broadband radiation with an unprecedented bandwidth of ~2%. The extremely small emittance demonstrated at SwissFEL paves the way for even more compact and affordable hard X-ray FELs, potentially boosting the number of facilities worldwide and thereby expanding the population of the scientific community that has access to X-ray FEL radiation

    The Compact Linear Collider (CLIC) - 2018 Summary Report

    Get PDF

    The Compact Linear Collider (CLIC) - 2018 Summary Report

    Get PDF
    The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear e+ee^+e^- collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively. CLIC uses a two-beam acceleration scheme, in which 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept has been refined using improved software tools. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations and parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25-30 years

    Progress in the Design of a Damped and Tapered Accelerating Structure for CLIC

    No full text
    Two of the main requirements for CLIC 30 GHz accelerating structures are an average accelerating gradient of 150 MV/m and features which suppress long-range transverse and longitudinal wakefields. The main effects that constrain the design of a copper structure are a surface electric field limit of about 300 MV/m, from evidence produced by the CLIC high-gradient testing program, and a pulsed surface heating temperature rise limit estimated to be of the order of 100 K. The interplay between maximum surface electric field, maximum surface magnetic field, transverse-wakefield suppression and RF-to-beam efficiency has been studied in detail. Several structures with a 110° phase advance and rather constant peak surface field distributions have been designed. Different damping-waveguide geometries and waveguide-to-cavity couplings are compared

    Dispersion characteristics of arbitrary periodic structures with rectangular grooves

    No full text
    corecore